A Bayesian Non-parametric Comparison of Two Treatments
نویسندگان
چکیده
منابع مشابه
A Hybrid Parametric, Non-parametric Approach to Bayesian Target Tracking
This article describes a versatile approach to non-linear, non-Gaussian noise target tracking which makes use of both parametric and non-parametric techniques within a Bayesian framework. It produces a Gaussian mixture model (GMM) of a track, but resorts to a sampling technique within the tracking process to handle non-linearity. GMMs are recovered from samples using the expectation-maximisatio...
متن کاملNon-parametric Bayesian super-resolution
Super-resolution of signals and images can improve the automatic detection and recognition of objects of interest. However, the uncertainty associated with this process is not often taken into consideration. This is important because the processing of noisy signals can result in spurious estimates of the scene content. This paper reviews a variety of super-resolution techniques and presents two...
متن کاملBayesian non-parametric parsimonious clustering
This paper proposes a new Bayesian non-parametric approach for clustering. It relies on an infinite Gaussian mixture model with a Chinese Restaurant Process (CRP) prior, and an eigenvalue decomposition of the covariance matrix of each cluster. The CRP prior allows to control the model complexity in a principled way and to automatically learn the number of clusters. The covariance matrix decompo...
متن کاملNon-Parametric Bayesian Areal Linguistics
We describe a statistical model over linguistic areas and phylogeny. Our model recovers known areas and identifies a plausible hierarchy of areal features. The use of areas improves genetic reconstruction of languages both qualitatively and quantitatively according to a variety of metrics. We model linguistic areas by a Pitman-Yor process and linguistic phylogeny by Kingman’s coalescent.
متن کاملNon-parametric Bayesian Kernel Models
1 SUMMARY Kernel models for classification and regression have emerged as widely applied tools in statistics and machine learning. We discuss a Bayesian framework and theory for kernel methods, providing a new rationalisation of kernel regression based on non-parametric Bayesian models. Functional analytic results ensure that such a non-parametric prior specification induces a class of function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scandinavian Journal of Statistics
سال: 2002
ISSN: 0303-6898,1467-9469
DOI: 10.1111/1467-9469.00891